समीकरण $|\sqrt{ x }-2|+\sqrt{ x }(\sqrt{ x }-4)+2=0,( x >0)$ के हलों का योग बराबर है -
$9$
$4$
$10$
$12$
यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
मानलिया कि $x_1, x_2, \ldots, x_6$ बहुपद $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$ के मूल हैं तो
माना समीकरणों $\mathrm{x}^2-12 \mathrm{x}+[\mathrm{x}]+31=0$ तथा $x^2-5|x+2|-4=0$ के वास्तविक मूलों की संख्या $\mathrm{m}$ तथा $\mathrm{n}$ है, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है। तो $\mathrm{m}^2+\mathrm{mn}+\mathrm{n}^2$ बराबर है_____.
यदि $x,\;y,\;z$ वास्तविक व भिन्न हों, तो $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - 2xy$हमेशा होगा